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traveling wave is narrower, and the phase velocity, which is

related to @ by VP= (kh/@)(b/h)VO, is lower. Comparison

with the result obtained for a single-row Ya.@ structure

shows that the coupling effect at U = 2h causes less than a

2-percent change in the K-/? diagram.

The theoretical result has been verified by experiments

[10], as shown in Fig. 2. Theory also predicts that the field

intensity in the transverse direction (x direction in Fig., 1)

decays exponentially. This is a typical characteristic of a

guided wave. In Fig. 3 the measured field intensity is shown

to decay at approximately 35 dB per wavelength in the x

direction. This shows that the level of mutual coupling in the

transverse direction is rather low when the arrays are

separated by at” least one wavelength.
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Coupling of Circuit Structures to Magnetostatic
Modes of Ferromagnetic Resonators

NICOLAS J. MOLL, MEMBER, lEEE

Abstract—The coupling between a current-carrying circuit strnc-

ture and the magnetoatatic modes of a general ferrornagnet, such as a
YIG resonator, is examined. A small-signal theory is presented that

describes the excitation of an arbitrary mode in terms of an effective

soseeptibilit y matrix; this description leads to a simple method for
calculating the z parameters of the resonator and coupling structure

combination. This result is tested by comparison with other theory
and with experiment. Applied to the case of a uniform field exciting
the uniform mode of an ellipsoidal resonator, it reduces to Carter’s
well-known formula. Applied to the case of a particular nonuniform

field exciting the main mode of a thin square resonator, it predicts the

experimental finding that the coupling strength depends only on the
resonator’s thickness. This last case illustrate the extended genera-

lity of our result which allows the treatment of situations where

the RF magnetization and field are not uniform.

NOMENCLATURE

km Unit vector in the direction of dc magnetization,

d#Y,iiz Coordinate axis unit vectors.
H Total magnetic field.
hd RF demagnetizing field.
h, Circuit induced field.

Hi Magnitude of dc field inside resonator.
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Magnitude of applied dc magnetic field.

Magnetic coupling function for port p.

Decomposition of k, on Vu. and Y-i.

Adjoint of the matrix kpu.
RF magnetization.

Total magnetization.

Saturation magnetization.

Complex amplitude of the uth eigenfunction.

Surface enclosing the volume fl.

Resonator volume.

Gyromagnetic ratio.

Kronecker symbol.

Matrix of susceptibilities for the uth mode.

uth eigenfunction.

Normalized real and imaginary parts of WU.

Unloaded radian bandwidth of resonator.

Magnetization frequency yM~.

All space excluding metallic conductors.

INTRODUCTION

A FERROMAGNETIC resonator was first used in a

practical circuit—a YIG sphere filter gyrator—by

Degrasse [1]. The problem of coupling a circuit, via induced

magnetic fields, to an ellipsoidal resonator was analyzed



934 IEEETRANSACTIONSON MICROWAVETHEORYAND TECHNIQUES, VOL. MIT-25, NO. 11, NOVEMBER 1977

shortly thereafter by Carter [2]. His analysis, based on

simulation of the ferromagnetic resonator with current

loops, contains two important restrictions: currents flowing

in the coupling structure must produce a uniform RF field in

the vicinity of the resonator, and only the uniform preces-

sional mode must be excited in the resonator. Carter’s

results are therefore unsuited for application to problems

relating to disk resonators since the coupling structure

generally produces a nonuniform RF field within the disk,

and since disk resonators will not support the uniform

precessional mode [3].

We have worked out a more general theory which predicts

the impedance due to any magnetostatic mode or modes of

any insulating ferromagnet coupled to any circuit structure.

The theory relies on deduction of the z parameters from the

complex power flow out of the coupling structure. By

calculating this power flow as an appropriate volume inte-

gral, we are able to avoid the artifice of replating the

resonator with a current loop, a procedure both confusing

and difficult to justify in the case of nonuniform field and

magnetization. In order to calculate this volume integral, we

need to review some rudimentary properties of the mag-

netostatic modes, and to show that most terms within the

integral are zero. Once these preliminaries are taken care of,

the z parameters are obtained quite directly.

MAGNETOSTATIC MODES

A ferromagnetic resonator has a sizable number of pos-

sible resonant modes. For a given resonator, many of these

modes will behave independently of either exchange or

electromagnetic propagation effects, and thus earn the name

of magnetostatic mode [4]–[6]. In the absence of anisotropy

effects, they are solutions of the lossless magnetostatic

equations of motion:

8iki/at = yiki x H (la)

VXH=() (lb)

V“(H+M)=O. (lC)

When anisotropy is important, it can sometimes be ac-

counted for by adding an effective anisotropy field to the dc

field Hi. Our reasoning is general enough to include this

possibility.

We will now write the small-signal versions of (l), includ-

ing a Bloch–Bloembergen loss term ~A@ [7] and an RF

driving field h,. The unit vector tl~ gives the direction of the
dc magnetization and internal magnetic field. As indicated
in Fig. 1, its direction is arbitrary and may vary throughout

the sample volume. Then in phasor notation,

(.j~ + 4Aco)m = YM#m X [h~ + l?e – (~i/MsWl. (2)
The equations of motion can be reduced to an eigenfunction

problem by using a Green’s function solution of (lc):

ha= V!?lV. m\ (3a)

where the Green’s operator has the general form

~~(r) = [ K(r,rl)f(rl) dV1. (3b)
‘n

‘-L

Fig. 1. A typical resonator coupfing-structure combination. The case
shown is an 1 x 1square resonator in a bandpass filter arrangement. The
unit vector ~~ indicates the direction of the dc magnetization, which
may vary with position.

The kernel K(r,rl ) depends on the coupling structure,

because the normal derivative of K must be zero at metallic

boundaries. Regardless of the exact form of %, (2) becomes

(jco + ~Aco)m = St’(m) + yA4,ii. x he (4a)

where

~(m) = yM,fi~ x [v~v “ – (HJMJ]m. (4b)

The magnetostatic modes are then the eigenfunctions of the

operator SY. We will write the uth eigenfunction as VU; its

corresponding eigenfrequency is COU,taken to be positive. An

examination of (4a) shows that in addition to the set of

eigenfunctions Tu with positive eigenfrequencies, the set of

complex conjugates Y?: are also eigenfunctions, but with

negative eigenfrequencies. As a matter of convenience, we

will write Y: as Y .“.

As shown in Appendix I, these modes obey the rather

unusual orthogonality relation

(5)

with suitable normalization. The minus sign on the right-

hand side is chosen when u <0.

We can now predict the exact RF magnetization

produced by an arbitrary exciting field, subject to the

assumption that the magnetization can be expanded as a

sum of the eigenfunctions; that is,

m= $ (muYu + m-uT.u). (6)

Some observations about the validity of this assumption are
in order.

From a mathematical standpoint, (6) can be written down

without hesitation if the eigenfunctions form a complete set

in the space of functions that map position within the

resonator into a complex vector perpendicular to 6 ~. For

specific cases such as a sphere in free space in a uniform field,

the eigenfunctions clearly have this property. It is not,

however, obvious from the general form of Y’ that they

invariably do, and the assumption should be checked case

by case.

From a physical standpoint, (6) simply says that the

magnetization is a superposition of the magnetostatic

modes. In most practical problems, this is apparently the
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case; then the mode spectrum need not be examined for

completeness.

Substituting (6) into (4) and applying (5), we then obtain

where u >0. At this point, it becomes convenient to intro-

duce a different representation than the eigcnfunctions.

Posing

we have

Then

mu + m.. mu — m–
mu, = lx

mui = j —= (8b)
o

where

and

co..coM
Xurr = Xuii =

m; - (co-’”~jAco)2

j(o.) – ~jAco)m~

– ‘“’i = ‘“i’ = CO?– (co – ~jAm)2”

(8c)

(9a)

(9b)

(9C)

(9d)

These equations constitute a complete description of the

behavior of the uth magnetostatic mode. Tlhey closely

resemble the effective susceptibility description of the uni-

form precessional mode of an ellipsoidal resclnator. The

susceptibility tensor is in fact the same except that

the resonant frequency is that of the uth mode. However,

the driving field and magnetization, rather than being

projected on coordinate axes, are projected against

the functions Y.r and Y“j. This result was qualitatively

anticipated by Dillon when he observed that a given mode

will or will not be excited by a given RF field distribution

depending on ~its projection on the transverse magnetiza-

tion of the mode in question” [5].

CIRCUIT-RESONATOR POWER FLOW

According to Poynting’s theorem, the instantaneous

power flowing out of the coupling structure is

P(t)= PO f [~ (h(t)+m(t))
1

0h(t) dV (lo)
‘Q

in the magnetostatic approximation. The volume of integra-

tion is all space excluding metallic conductors, and thus

includes fringing demagnetization fields. For the case of field

935

quantities varying in time as ~m’, we can most conveniently

use the complex power

P = average power + j “ reactive power (Ila)

‘$@Po [ (h +rn) ~h* dV. (llb)
‘a

Properly speaking, his the total RF magnetic field h. + h~

However, the terms (m + h) “ hj and h ~” h: make no con-

tribution to the integral (see Appendix II) so

P = ~j~po ([ he.ii~+m”h~]dV. (12a)
‘a

The power from the first term is imaginary; it corresponds to

the reactive power flow in the ordinary inductances of the

circuit. If we neglect this term, we have simply

P = $jfmpo m “ h: dV. (12b)
‘v

Using the result of the preceding section, we can write the

power flow in an n-port structure in terms of port currents;

the resulting expression then allows the deduction of the z

parameters of the n-port.
The total external magnetic field induced by an n-port

coupling structure is

he= ~ ipkp (13)
~=1

where iDkp is the magnetic field induced by a current iD

flowing-into port p. Combining (8c), (9a), (9b), (12b), and

(13), we find

where the coupling matrix for port q and mode u is

The complex

kq” = ~
1( )

“ kg. Yu,

v .V kq” Yui
dV. (14b)

power flowing into an n-port network is

so the z parameters of the ferromagnetic device are

A glance at the ori@al power expression (12a) shows that

when the circuit inductance is not neglected

1 u J

where LPq is the appropriate self or mutual inductance.

These are the z parameters of a collection of series connected

n-ports; the coupling inductances are represented by one

n-port, and each magnetostatic mode by another. Fig. 2

indicates this arrangement for a two-port circuit.

Equations (14b) and (17) are the main result of this paper;
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Fig. 2. The connection of single-mode two-ports into an equivalent cir-

cuit of a general ferromagnetic two-port.

in principle, they permit the calculation of the z parameters

of any coupling structure and ferromagnetic resonator

combination, provided that we know the spatial dependence

and resonant frequencies of the excited eigenfunctions and

the spatial dependence of the coupler-induced field in the

vicinity of the resonator.

APPLICATIONS

The theory just presented can be tested by applying it to

special cases. Carter’s theory covers the problem of coupling

to the uniform mode of a spherical resonator; we have

experimental coupling data on two configurations of flat

resonators. In this section we compare these results with our

own theoretical predictions.

UniJorm Mode of a Sphere: Consider a YIG sphere

coupled to two crossed loops perpendicular to the x and y

axes. Suppose that the field produced by the loops is uniform

within the sphere and that only the uniform mode is excited;

this is the case considered by Carter [2], [8] and the most

commonly used configuration of YIG resonators. The eigen-

function corresponding to the uniform mode is just

w,= (ii. + jq/@ (18)

with an eigenfrequency or ~ = yHO. Thus

v,,= iix Y,,=;, (19)

whence

Z11 = jd’11 +“iwo Wzxx
Zzz = jco~zz + jCWOVk; xyy

Z12 = –Z21 =jcopo Vklk2x~y. (20)

This is identical to Carter’s result.

Square Resonator in a Nonuniform Field: Consider the

coupling and resonator structure in Fig. 1, a sketch of a

two-port bandpass filter. The magnetic field associated with

the coupling structure is more or less confined to the

immediate vicinity of the coupling loops. In the case where

the loops’ width and spacing are small compared to a side of

the resonator, the circuit-induced RF field is quite nonuni-

form across the face of the resonator, so the situation

provides a good example of the generality of the theory. A

specific test of the theory is to compare the predicted and

experimentally determined coupling of the structure; this is

easily done in terms of the circuit’s external Q, which can be

determined from a simple bandwidth and insertion loss

measurement.

We will limit our considerations to frequencies near the

main resonance; there are no modes degenerate to the main

resonance that will be coupled to the circuit, so only the

main mode will be excited. If the RF magnetization is un-

pinned [3], the main resonance eigenfunction is approx-”

imately

Y.%. @ cos (nx/1) cos (zy/l)(6X+ jii,). (21)

The resonator is of length 1 on a side, centered on the

coordinates as shown in Fig. 1. Equation (21) is the first-

order plane-wave approximation to the eigenfunction; in

using it we ignore effects at the resonator edges, beyond

assuring that T. vanishes there, and totally neglect the effect

of adjacent conductors.

The coupling function k ~ can be approximated as

(k = (l/weyim 1X1 <+~
1 0, 1X1 >*W..

(22)

The effective width Wedepends on the details of the coupling

geometry; as long as it is small, its exact value is unimpor-

tant because it drops out of the integral of (14b), which

becomes

‘447) ‘4’s (23)

The z parameters for a resonator of thickness t are then

Z= j16n-2~~ot~a. (24) ,

The external Q derived from this impedance matrix is

QE =
nzzo

32p. tcoM
(25)

when the filter is driven and terminated with impedances of

.40.

This is an interesting result; it says that the coupling
between the resonator and a narrow loop depends only on

the resonator’s thickness, not on its overall size. A perusal of

the mathematics shows that this property is basic to any

coupling structure that confines the RF driving field to a

narrow strip across the resonator. A more precise represen-

tation of YU than (21), or a resonator of a shape different

from a square, will change the numerical constants in (25)

but its overall form should remain substantially the same.

That view is supported by the data shown in Fig. 3; there, the

predicted and measured external Qs are compared for filters

constructed with two different size resonators, both 20pm

thick. The resonators were made, as in the next experiment,
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Flg.3. Acomparison of themeasured andcalculated Q, for2O-pm-thick
YIG resonators 2 and 4 mm square, coupled with 0.5-rrlm-wide strips.
The coupling is nearly the same for both resonators.
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Fig.4. Acomparison of themeasured andcalculated Q~f{>rthree modes
of a 2-mm-diameter disk, 20 pm thick, coupled to a 50-$2stripline. The
coupling constant kl is 39&xin reciprocal meters, This small coupfing
constant, which is determined entirely by the striplin,e dimensions,
results inthe very large external Qs.

from undoped liquid-phase epitaxial YIG on a gadolinium

gallium garnet substrate, and have unloaded Q’s of about

1000. The data show that the external Q is indeed size

independent; there is, however, a factor of two discrepancy

between the measured and predicted values. This arises from

the approximation involved in taking (21) as the

eigenfunction.

Disk Resonator in a Unform Field: An interesting prob-

lem to consider in this light is that of a resonator coupled to a

terminated triplate stripline of dimensions somewhat larger

than the resonator. Here, the effect of the metallic boun-

daries should be small, and the first-order plane-wave

approximation should be a good quantitative description of

the eigenfunction. It happens that this experiment was done

with disk resonators; thus [9]

(26)

The parameter SUis the uth root of the Bessel function ~O; Y.

vanishes at the edges of the disk. The external Q calculated

using this approximation is

(27)

Fig. 4 shows the measured and calculated values of Q~ for

the three lowest order modes; the quantitative agreement is

good.

CONCLUSIONS

We have shown how to calculate the electrical properties

of an arbitrary ferromagnetic resonator coupled to an

arbitrary coupling structure. This is a considerable exten-

sion of Carter’s previous work on this topic; his result

strictly applies only to the uniform precessional mode of

ellipsoidal resonators, and then only when this mode is

driven by a uniform magnetic field. The key results of the

calculation are quantitatively contained in (9), (14), and (17).

These equations show that the excitation of any mode

depends on the projection of the driving field against a

particular representation of that mode, and on an effective

matrix susceptibility of a form similar to the bulk suscepti-

bility. These results are applied to special cases. The problem

of a thin square resonator coupled to a narrow strip leads to

the particularly interesting conclusion that the impedance

presented by the square depends only on its thickness. This

qualitative result is supported by experiment. In the case of a

disk resonator in a uniform field, the agreement is quantita-

tive thanks to the greater accuracy of our approximation to

the eigenfunction. The special cases studied are presented

mainly as illustrative aids. The range of problems to which

the formulation may be applied is considerably broader; we

particularly wish to emphasize the applicability of these

results when several modes are excited,

APPENDIX I

Orthogonality of Eigenfunctions: The orthogonality rela-

tion (5) is inspired by that of Walker [4]. However, the

direction of Mmay vary throughout a generalized resonator

so we need a slightly different derivation. By definition,

jcoUYU = YM,d~ x [v@v . – (Hi/M$)]~U (Al)

so

jo.).’l’~ x Y“ = y(M#ijU “ Y?U– HiV~ . yti~~ (A2)

where we have written the demagnetizing field VW . Y. as

h~U. Interchanging indices and conjugating,

j(cou – coo) I y:xyo.~mdv

‘v

= yM, (( h;u . YU – hd. “ W~) dV. (A4)
‘v

The integral on the right-hand side vanishes for the reasons

given by Walker, so

APPENDIX II

To prove

(m+h). h.dV=O (Bl)
‘0
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we start with the observation that h~ is a gradient:

h.= V~~. (B2)

“Then from the divergence theorem

(@+h)kiV=j O,(m+h)ds
rr ‘“ _J ~dv . (rn+h)dV. (B3)

n

The first integral on the right-hand side is zero because the

RF magnetic induction (zn + h) must be parallel to the

coupling conductors, which define the surface SO

The second integral is zero because V “ (m+ h) = O.
A similar argument demonstrates that

I he. h.dV=O. (B4)
‘Q
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Further Studies on the Microwave Auditory
Effect

JAMES C. LIN, SENIOR MEMBER, lEEE

Abstract—Autlitory signals generated in humans and animals who

are irradiat@ with short rectangular pulses of microwave energy
have been studied. Assuming that the effect arises from sound wav=

generated in the tissues of the head by rapid, thermal expansion
caused by microwave absorption, and using, a technique described
previously, the governing equations are solved for a homogeneous

spherical model of the head under constrained-surface conditions.

The rqults indicate that the frequency of the auditory signal is a
function of the size and acoustic property of the head only. While the

amplitude aud frequency of the microwav~induced sound are higher
than those pr~icted by the stress-free boundary condition formula-

- ti::i they are compatible with the experimental results reported to

INTRODUCTION

I
N RECENT YEARS many investigators have studied the

auditory sensations produced in man by appropriately

modulated microwave energy [1]–[5]. Other investigators

Manuscript received October 26, 1976; revised April 4, 1977. This work
was SUDDOrted in uart bv National Science Foundation under Grant ENG
75-152~?. “ -

The author is with the Department of Electrical and Computer Engin-
eering and the Department of Physical Medicine and Rehabilitation,
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[3], [5]-[7] have shown that electrophysiologic auditory

activity may be evoked by irradiating the brains of labora-

tory animals with rectangular pulses of microwave energy.

Responses elicited in cats both by conventional acoustic

stimuli and by pulsed microwaves were similar and they

disappeared following disablement of the cochlea and fol-

lowing death. More recently, cochlear microphonics have

been recorded from the round window of cats and guinea

pigs during irradiation by pulse-modulated 918-MHz
microwaves. These results suggested that microwave-
induced auditory sensation is transduced by a mechanism

similar to that responsible for conventional sound percep-

tion and that the primary site of interaction resides some-

where peripheral to the cochlea. A peripheral response to

microwave pulses should involve mechanical displacement

of the tissues of the head with resultant dynamic effects on

the cochlea.

Several physical mechanisms have been suggested to

account for the conversion of microwaves to acoustic ener-

gies; these include radiation pressure, electrostriction, and

thermal expansion [3], [8]–[10]. A comparison of these three

mechanisms for planar geometries revealed that the forces of


