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traveling wave is narrower, and the phase velocity, which is
related to @ by V, = (kh/®)(b/h)V,, is lower. Comparison
with the result obtained for a single-row Yagi structure
shows that the coupling effect at U = 2h causes less than a
2-percent change in the K- diagram.

The theoretical result has been verified by experiments
[10], as shown in Fig. 2. Theory also predicts that the field
intensity in the transverse direction (x direction in Fig. 1)
decays exponentially. This is a typical characteristic of a
guided wave. In Fig. 3 the measured field intensity is shown
to decay at approximately 35 dB per wavelength in the x
direction. This shows that the level of mutual coupling in the
transverse direction is rather low when the arrays are
separated by at least one wavelength.
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Coupling of Circuit Structures to Magnetostatic
Modes of Ferromagnetic Resonators

NICOLAS J. MOLL, MEMBER, IEEE

Abstract—The coupling between a current-carrying circuit struc-
ture and the magnetostatic modes of a general ferromagnet, suchas a
YIG resonator, is examined. A small-signal theory is presented that
describes the excitation of an arbitrary mode in terms of an effective
susceptibility matrix; this description leads to a simple method for
calculating the z parameters of the resonator and coupling structure
combination. This result is tested by comparison with other theory
and with experiment. Applied to the case of a uniform field exciting
the uniform mode of an ellipsoidal resonator, it reduces to Carter’s
well-known formula. Applied to the case of a particular nonuniform
field exciting the main mode of a thin square resonator, it predicts the
experimental finding that the coupling strength depends only on the
resonator’s thickness. This last case illustrates the extended genera-
lity of our result which allows the treatment of situations where
the RF magnetization and field are not uniform.

NOMENCLATURE

»f. Coordinate axis unit vectors.
Total magnetic field.
RF demagnetizing field.
h, Circuit induced field.
H; Magnitude of dc field inside resonator.
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Unit vector in the direction of dc magnetization.

Magnitude of applied dc magnetic field.
k, Magnetic coupling function for port p.

k,, Decomposition of k, on ¥,, and ¥ ;.

K, Adjoint of the matrix k .

m RF magnetization.

M Total magnetization.

M, Saturation magnetization.

m, Complex amplitude of the uth eigenfunction.
Sa Surface enclosing the volume Q.

| 4 Resonator volume.

Y Gyromagnetic ratio.

Oy Kronecker symbol.

Lu Matrix of susceptibilities for the uth mode.

b ¢ uth eigenfunction.

Y...¥Y.; Normalized real and imaginary parts of ‘V,.
Aw Unloaded radian bandwidth of resonator.
O Magnetization frequency yM,.

Q All space excluding metallic conductors.

INTRODUCTION

A FERROMAGNETIC resonator was first used in a
practical circuit—a YIG sphere filter gyrator—by
Degrasse [1]. The problem of coupling a circuit, via induced
magnetic fields, to an ellipsoidal resonator was analyzed
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shortly thereafter by Carter [2]. His analysis, based on
simulation of the ferromagnetic resonator with current
loops, contains two important restrictions: currents flowing
in the coupling structure must produce a uniform RF field in
the vicinity of the resonator, and only the uniform preces-
sional mode must be excited in the resonator. Carter’s
results are therefore unsuited for application to problems
relating to disk resonators since the coupling structure
generally produces a nonuniform RF field within the disk,
and since disk resonators will not support the uniform
precessional mode [3]

We have worked out a more general theory which predicts
the impedance due to any magnetostatic mode or modes of
any insulating ferromagnet coupled to any circuit structure.
The theory relies on deduction of the z parameters from the
complex power flow out of the coupling structure. By
calculating this power flow as an appropriate volume inte-
gral, we are able to avoid the artifice of replacing the
resonator with a currént loop, a procedure both confusing
and difficult to justify in the case of nonuniform field and
magnetization. In order to calculate this volume integral, we
need to review some rudimentary properties of the mag-
netostatic modes, and to show that most terms within the
integral are zero. Once these preliminaries are taken care of,
the z parameters are obtained quite directly.

MAGNETOSTATIC MODES

A ferromagnetic resonator has a sizable number of pos-
sible resonant modes. For a given resonator, many of these
modes will behave independently of either exchange or
electromagnetic propagation effects, and thus earn the name
of magnetostatic mode [4]-[6]. In the absence of anisotropy
effects, they are solutions of the lossless magnetostatic
equations of motion:

oM/t = yM x H (1a)
VxH=0 (1b)
V- (H+M)=0. (1c)

When anisotropy is important, it can sometimes be ac-
counted for by adding an effective anisotropy field to the dc
field H,. Our reasoning is general enough to include this
possibility.

We will now write the small-signal versions of (1), includ-
ing a Bloch-Bloembergen loss term $Aw [7] and an RF
driving field k.. The unit vector &, gives the direction of the
dc magnetization and internal magnetic field. As indicated
in Fig. 1, its direction is arbitrary and may vary throughout
the sample volume. Then in phasor notation,

X[hy+h,— (H/M)m]. (2)

The equations of motion can be reduced to an eigenfunction
problem by using a Green’s function solution of (lc):

(jo + Aw)m = yM a4,

. h;=V9V - m (3a)
where the Green’s operator has the general form
gf(r)=| Krr)f(ry)dvi (3b)
Q
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Fig. 1. A typical resonator coupling-structure combination. The case
shown is an / X Isquare resonator in a bandpass filter arrangement. The
unit vector &, indicates the direction of the dc magnetization, which
may vary with position.

The kernel K(ryr,) depends on the coupling structure,
because the normal derivative of K must be zero at metallic
boundaries. Regardless of the exact form of %, (2) becomes

(jo + $Aw)n = L(m) + yM,a,, xh, (4a)

where

#(m)=yM,a, x[V4Y - —(H;/M)jm. (4b)
The magnetostatic modes are then the eigenfunctions of the
operator .¥. We will write the uth eigenfunction as W,,; its
corresponding eigenfrequency is w,, taken to be positive. An
examination of (4a) shows that in addition to the set of
eigenfunctions ¥, with positive eigenfrequencies, the set of
complex conjugates W¥ are also eigenfunctions, but with
negative eigenfrequencies. As a matter of convenience, we
will write W% as ¥ _,.

As shown in Appendix I, these modes obey the rather
unusual orthogonality relation

14

— T uv

1

— | P*x¥,-a,dV= 5

vl )
with suitable normalization. The minus sign on the right-
hand side is chosen when u < 0.

We can now predict the exact RF magnetization
produced by an arbitrary exciting field, subject to the
assumption that the magnetization can be expanded as a
sum of the eigenfunctions; that is,

m =

(mu‘l’u + m—u‘l’—u)' (6)

»-MS

Some observations about the validity of this assumption are
in order.

From a mathematical standpoint, (6) can be written down
without hesitation if the eigenfunctions form a complete set
in the space of functions that map position within the
resonator into a complex vector perpendicular to 4, For
specific cases such as a sphere in free space in a uniform field,
the eigenfunctions clearly have this property. It is not,
however, obvious from the general form of % that they
invariably do, and the assumption should be checked case
by case.

From a physical standpoint, (6) simply says that the
magnetization is a superposition of the magnetostatic
modes. In most practical problems, this is apparently the
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case; then the mode spectrum need not be examined for
completeness.
Substituting (6) into (4) and applying (5), we then obtain

M,
vV
where u > 0. At this point, it becomes convenient to intro-

duce a different representation than the eigenfunctions.
Posing

[ he-¥ynadv (1)
4

L 4 - -Y_
\llur = ,."—+‘l’,_" \llu‘ = _u,_" (Sa)
mu+m—u m,—m_,
m,, = T my =j 7‘— (8b)
we have
m= Z mur‘Pur + mui‘yui' (80)
1
Then
my, Xurr  Xuri hur
— 9
(mui) (Xuir Xuii) (hui) ( a)
where
h 1 h,-¥
wl e ur 9b
(hui) V J‘V (he : ‘Pul) dV ( )
and
W, Wnrr
= s = u 9
KXurr Kuii (U,% _ ((D _ %]A(D)z ( C)
i(0 — LjAw
— Xuri = Xuir = J( 2/ )(DM (9d)

wi — (@ — SjAw)®

These equations constitute a complete description of the
behavior of the uth magnetostatic mode. They closely
resemble the effective susceptibility description of the uni-
form precessional mode of an ellipsoidal resonator, The
susceptibility tensor is in fact the same except that
the resonant frequency is that of the uth mode. However,
the driving field and magnetization, rather than being
projected on ceordinate axes, are projected against
the functions ¥,, and W, This result was qualitatively
anticipated by Dillon when he observed that a given mode
will or will not be excited by a given RF field distribution
depending on “its projection on the transverse magnetiza-
tion of the mode in question” 5]

CIRCUIT-RESONATOR POWER FLOW

According to Poynting’s theorem, the instantaneous
power flowing out of the coupling structure is

PO= o [, |2 0) + mi0)

Q

“h@)dV  (10)

in the magnetostatic approximation. The volume of integra-
tion is all space excluding metallic conductors, and thus
includes fringing demagnetization fields. For the case of field
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quantities varying in time as ¢, we can most conveniently
use the complex power

P = average power + j - reactive power  (11a)

= Ljopo | (h+m)- h* dv. (11b)
Q
Properly speaking, & is the total RF magnetic field h,+ h .
However, the terms (m + k) - k% and h, - b make no con-
tribution to the integral (see Appendix II) so

P = Yjou, [ [h, - h* + m- h*] dV. (12a)

Q
The power from the first term is imaginary; it corresponds to
the reactive power flow in the ordinary inductances of the
circuit. If we neglect this term, we have simply
P=LYjou, | m-h*av. (12b)

v

Using the result of the preceding section, we can write the
power flow in an n-port structure in terms of port currents;
the resulting expression then allows the deduction of the z

parameters of the n-port.

The total external magnetic field induced by an n-port
coupling structure is

n

ho=Y ik,

p=1

(13)

where i,k, is the magnetic field induced by a current i,
flowing into port p. Combining (8c), (9a), (9b), (12b), and
(13), we find

P=3joucV Y, itkh.p.k i, (14a)
u,p.q
where the coupling matrix for port g and mode u is
1¢ (k,- ¥
ko=~ T rav. 14
“ V JV(kq ' ‘l’ui) d ( b)
The complex power flowing into an n-port network is
P=3%i%, (15a)
p
=3 Z 132 palq (15b)
p.a
so the z parameters of the ferromagnetic device are
' qu =_](D,U0 V Z kTpuXukqu' (16)

A glance at the original power expression (12a)shows that
when the circuit inductance is not neglected
Zpg=Jo |Lpg+ oV Y kbutukgu (17)
u

where L,, is the appropriate self or mutual inductance.
These are the z parameters of a collection of series connected
n-ports; the coupling inductances are represented by one
n-port, and each magnetostatic mode by another. Fig. 2

indicates this arrangement for a two-port circuit.
Equations (14b) and (17) are the main result of this paper;
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MODE 2

MODE N °

Fig. 2. The connection of single-mode two-ports into an equivalent cir-
cuit of a general ferromagnetic two-port.

in principle, they permit the calculation of the z parameters
of any coupling structure and ferromagnetic resonator
combination, provided that we know the spatial dependence
and resonant frequencies of the excited eigenfunctions and
the spatial dependence of the coupler-induced field in the
vicinity of the resonator.

APPLICATIONS

The theory just presented can be tested by applying it to
special cases. Carter’s theory covers the problem of coupling
to the uniform mode of a spherical resonator; we have
experimental coupling data on two configurations of flat
resonators. In this section we compare these results with our
own theoretical predictions.

Uniform Mode of a Sphere: Consider a YIG sphere
coupled to two crossed loops perpendicular to the x and y
axes. Suppose that the field produced by the loops is uniform
within the sphere and that only the uniform mode is excited;
this is the case considered by Carter [2], [8] and the most
commonly used configuration of YIG resonators. The eigen-
function corresponding to the uniform mode is just

¥, = (@, +ja,)\/2 (18)
with an eigenfrequency w, = yH,. Thus
¥Y,=a, Y, =a, (19)
whence
Zy 1 =joLyy + jopo VE Y
Z3s = joL,s + jouo VK3 1y,
Zyy=—2Z = jopoVkik; sy (20)

This is identical to Carter’s result.

Square Resonator in a Nonuniform Field: Consider the
coupling and resonator structure in Fig. 1, a sketch of a
two-port bandpass filter. The magnetic field associated with
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the coupling structure is more or less confined to the
immediate vicinity of the coupling loops. In the case where
the loops’ width and spacing are small compared to aside of
the resonator, the circuit-induced RF field is quite nonuni-
form across the face of the resonator, so the situation
provides a good example of the generality of the theory. A
specific test of the theory is to compare the predicted and
experimentally determined coupling of the structure; this is
easily done in terms of the circuit’s external Q, which can be
determined from a simple bandwidth and insertion loss
measurement.

We will limit our considerations to frequencies near the
main resonance; there are no modes degenerate to the main
resonance that will be coupled to the circuit, so only the
main mode will be excited. If the RF magnetization is un-
pinned [3], the main resonance eigenfunction is approx--
imately

Y.~ /2 cos (nx/l) cos (my/l)@, + ja,). (21)

The resonator is of length I on a side, centered on the
coordinates as shown in Fig. 1. Equation (21) is the first-
order plane-wave approximation to the eigenfunction; in
using it we ignore effects at the resonator edges, beyond
assuring that ¥, vanishes there, and totally neglect the effect
of adjacent conductors.

The coupling function &, can be approximated as

:(1/We)&n Ix| <iw,
k,=

0, |x|>iw. )

The effective width W, depends on the details of the coupling
geometry; as long as it is small, its exact value is unimpor-
tant because it drops out of the integral of (14b), which

becomes
4/nl 0
"‘“N( 0 ) k2™ (4/nl)‘

The z parameters for a resonator of thickness ¢ are then
(24)

(23)

Z = jl6n™ 2wuyty,.
The external Q derived from this impedance matrix is
n’Z,

Qe = 32ptwny (25)
when the filter is driven and terminated with impedances of
ZO.

This is an interesting result; it says that the coupling
between the resonator and a narrow loop depends only on
the resonator’s thickness, not on its overall size. A perusal of
the mathematics shows that this property is basic to any
coupling structure that confines the RF driving field to a
narrow strip across the resonator. A more precise represen-
tation of ¥, than (21), or a resonator of a shape different
from a square, will change the numerical constants in (25)
but its overall form should remain substantially the same.
That viewis supported by the data shown in Fig. 3; there, the
predicted and measured external Q’s are compared for filters
constructed with two different size resonators, both 20 um
thick. The resonators were made, as in the next experiment,
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Fig. 3. A comparison of the measured and calculated Q. for 20-um-thick
YIG resonators 2 and 4 mm square, coupled with 0.5-mm-wide strips.
The coupling is nearly the same for both resonators.
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Fig. 4. A comparison of the measured and calculated Qp for three modes
of a 2-mm-diameter disk, 20 um thick, coupled to a 50-Q stripline. The
coupling constant &, is 394 _ in reciprocal meters. This small coupling
constant, which is determined entirely by the stripline dimensions,
results in the very large external Q.

from undoped liquid-phase epitaxial YIG on a gadolinium
gallium garnet substrate, and have unloaded (s of about
1000. The data show that the external Q is indeed size
independent; there is, however, a factor of two discrepancy
between the measured and predicted values. This arises from
the approximation involved in taking (21) as the
eigenfunction.

Disk Resonator in a Uniform Field: An interesting prob-
lem to consider in this light is that of a resonator coupled to a
terminated triplate stripline of dimensions somewhat larger
than the resonator. Here, the effect of the metallic boun-
daries should be small, and the first-order plane-wave
approximation should be a good quantitative description of
the eigenfunction. It happens that this experiment was done
with disk resonators; thus [9]

Jo(sur/ro) » | .
R (4, + ja,).
\/5 J l(s,,)( a,)
The parameter s, is the uth root of the Bessel function J,; ¥,

vanishes at the edges of the disk. The external () calculated
using this approximation is

v, (26)

s2Z,

= 27
4/1060MV|k1|2 ( )

Ok

Fig. 4 shows the measured and calculated values of Q for
the three lowest order modes; the quantitative agreement is
good.
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CONCLUSIONS

We have shown how to calculate the electrical properties
of an arbitrary ferromagnetic resonator coupled to an
arbitrary coupling structure. This is a considerable exten-
sion of Carter’s previous work on this topic; his result
strictly applies only to the uniform precessional mode of
ellipsoidal resonators, and then only when this mode is
driven by a uniform magnetic field. The key results of the
calculation are quantitatively contained in (9), (14),and (17).
These equations show that the excitation of any mode
depends on the projection of the driving field against a
particular representation of that mode, and on an effective
matrix susceptibility of a form similar to the bulk suscepti-
bility. These results are applied to special cases. The problem
of a thin square resonator coupled to a narrow strip leads to
the particularly interesting conclusion that the impedance
presented by the square depends only on its thickness. This
qualitative result is supported by experiment. In the case ofa
disk resonator in a uniform field, the agreement is quantita-
tive thanks to the greater accuracy of our approximation to
the eigenfunction. The special cases studied are presented
mainly as illustrative aids. The range of problems to which
the formulation may be applied is considerably broader; we
particularly wish to emphasize the applicability of these
results when several modes are excited.

APPENDIX I

Orthogonality of Eigenfunctions: The orthogonality rela-
tion (5) is inspired by that of Walker [4]. However, the
direction of M may vary throughout a generalized resonator
so we need a slightly different derivation. By definition,

jo, ¥, =M, b, x[VEV - —(H/M)]Y, (A1)
SO
jo, Vi x ¥, =y(Mh5, - ¥, — HY ¥ )i, (A2)

where we have written the demagnetizing field V4V - ¥ ,as
h,,. Interchanging indices and conjugating,

.]wu‘l‘t X ‘Pv = V(Mshdv ' ll‘:‘: - Hl'{‘:': . ‘Pv)&m' (A3)
Thus

j(wu - wv) ‘[V ‘Pﬁ x ‘I’v : &m dv
=M, | (%W~ ha W5 dV. (A4)
v

The integral on the right-hand side vanishes for the reasons
given by Walker, so

(WE X W, a4 dV =0, forw,+w, (AS)
APPENDIX 11
To prove
| (m+h) h,dv=0 (B1)

Q
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we start with the observation that &, is a gradient:
hd = V¢d'

) (B2)
Then from the divergence theorem

[ n+hy- B av =] gum+h) dS
—[ ¢V (m+myav. (83)

The first integral on the right-hand side is zero because the
RF magnetic induction (m + k) must be parallel to the
coupling conductors, which define the surface Sg.
The second integral is zero because V - (m + h) = 0.

A similar argument demonstrates that

[ he-hyav=o0. (B4)
YQ
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Further Studies on the Microwave Auditory
Effect

JAMES C. LIN, SENIOR MEMBER, IEEE

Abstract—Auditory signals generated in humans and animals who
are irradiated with short rectangular pulses of microwave energy
have been studied. Assuming that the effect arises from sound waves
generated in the tissues of the head by rapid thermal expansion
caused by microwave absorption, and using a technique described

_ previously, the governing equations are solved for a homogeneous
spherical model of the head under constrained-surface conditions.
The results indicate that the frequency of the auditory signal is a
function of the size and acoustic property of the head only. While the
amplitude and frequency of the microwave-induced sound are higher
than those predicted by the stress-free boundary condition formula-

- :lion, they are compatible with the experimental results reported to

ate.

INTRODUCTION

N RECENT YEARS many investigators have studied the
auditory sensations produced in man by appropriately
modulated microwave energy [1]-[5]. Other investigators
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[3], [5H7] have shown that electrophysiologic auditory
activity may be evoked by irradiating the brains of labora-
tory animals with rectangular pulses of microwave energy.
Responses elicited in cats both by conventional acoustic
stimuli and by pulsed microwaves were similar and they
disappeared following disablement of the cochlea and fol-
lowing death. More recently, cochlear microphonics have
been recorded from the round window of cats and guinea
pigs during irradiation by pulse-modulated 918-MHz
microwaves. These results suggested that microwave-
induced auditory sensation is transduced by a mechanism
similar to that responsible for conventional sound percep-
tion and that the primary site of interaction resides some-
where peripheral to the cochlea. A peripheral response to
microwave pulses should involve mechanical displacement
of the tissues of the head with resultant dynamic effects on
the cochlea.

Several physical mechanisms have been suggested to
account for the conversion of microwaves to acoustic ener-
gies; these include radiation pressure, electrostriction, and
thermal expansion [3], [8]-{10]. A comparison of these three
mechanisms for planar geometries revealed that the forces of



